« Réseau autoattentif » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==Définition==
==Définition==
Le réseau autoattentif ou réseau de neurones autoattentif désigne une architecture de réseau de neurones profond, de séquence à séquence, très performante. Il utilise le mécanisme d'attention, plus précisément l'autoattention, pour remplacer à la fois la récurrence et les convolutions.  
Le réseau autoattentif ou réseau de neurones autoattentif désigne une architecture de réseau de neurones profond, de [[Modèle séquence à séquence|séquence à séquence]], très performante. Il utilise le mécanisme d'attention, plus précisément l'autoattention, pour remplacer à la fois la récurrence et les convolutions.  


==Compléments==
==Compléments==

Version du 24 décembre 2022 à 18:10

Définition

Le réseau autoattentif ou réseau de neurones autoattentif désigne une architecture de réseau de neurones profond, de séquence à séquence, très performante. Il utilise le mécanisme d'attention, plus précisément l'autoattention, pour remplacer à la fois la récurrence et les convolutions.

Compléments

En anglais on dit self-attention learning et plus souvent transformer qui est un clin d'œil à la franchise de jouets et films japonais « Transformers ».

Les réseaux autoattentifs sont issus des travaux pionniers du laboratoire MILA dirigé par Yoshua Bengio à l'Université de Montréal qui ont défini un mécanisme d'attention d'abord utilisé en traduction automatique neuronale.

Français

réseau de neurones autoattentif

réseau autoattentif

modèle autoattentif

apprentissage autoatttentif

réseau de neurones à autoattention

réseau à autoattention

transformeur


Anglais

Transformer

self-attention network

self-attention learning

Source: Claude Coulombe, Datafranca.org

Source: Termino