« Espace de Hilbert » : différence entre les versions


(Page créée avec « ==en construction== == Définition == espace vectoriel de nombres réels ou complexes muni d'un produit scalaire euclidien ou hermitien, qui sert à mesurer des distances... »)
 
m (Remplacement de texte — « quantique-2 » par « Quantique »)
Ligne 16 : Ligne 16 :




[[Catégorie:quantique-2]]
[[Catégorie:Quantique]]


[[Catégorie:vocabulaire]]
[[Catégorie:vocabulaire]]

Version du 5 avril 2023 à 14:31

en construction

Définition

espace vectoriel de nombres réels ou complexes muni d'un produit scalaire euclidien ou hermitien, qui sert à mesurer des distances et des angles et de définir une orthogonalité. C’est une extension à n dimensions du concept d’espace euclidien à trois dimensions. En mécanique quantique, l'état d'un quantum est représenté par un vecteur dans un espace de Hilbert à autant de dimensions que le nombre d’états de base (ou observables) de ce quantum. Il s’agit d’espaces géométriques qui servent notamment à mesurer des longueurs et des angles, de faire des projections sur des dimensions et de définir l’orthogonalité entre vecteurs.

Français

Espace de Hilbert

Anglais

XXXXXXXXXX


Source : Comprendre l'informatique quantique par Olivier Ezratty

Contributeurs: JSZ, wiki