« Apprentissage fédéré vertical » : différence entre les versions


m (Patrickdrouin a déplacé la page Vertical Federated Learning vers Apprentissage fédéré vertical)
Aucun résumé des modifications
Ligne 2 : Ligne 2 :
L'apprentissage fédéré vertical est une variante de l'apprentissage fédéré dans laquelle plusieurs sources de données ayant des attributs différents concernant le même ensemble de données entraînent conjointement des modèles d'apprentissage automatique sans exposer les données brutes ou les paramètres des modèles.
L'apprentissage fédéré vertical est une variante de l'apprentissage fédéré dans laquelle plusieurs sources de données ayant des attributs différents concernant le même ensemble de données entraînent conjointement des modèles d'apprentissage automatique sans exposer les données brutes ou les paramètres des modèles.


==Compléments=
==Compléments==
L'apprentissage vertical fédéré ou l'apprentissage fédéré basé sur les attributs s'applique aux cas où deux ensembles de données partagent un même identificateur mais avec des attributs différents.
L'apprentissage vertical fédéré ou l'apprentissage fédéré basé sur les attributs s'applique aux cas où deux ensembles de données partagent un même identificateur mais avec des attributs différents.


Ligne 24 : Ligne 24 :
<small>
<small>


[http://espace.etsmtl.ca/id/eprint/2447/1/BOUOUDINA_Selma.pdf  Source : Bououdina 2020 ]


[https://arxiv.org/abs/2211.12814  Source : arxiv ]
[https://arxiv.org/abs/2211.12814  Source : arxiv ]

Version du 18 avril 2023 à 14:54

Définition

L'apprentissage fédéré vertical est une variante de l'apprentissage fédéré dans laquelle plusieurs sources de données ayant des attributs différents concernant le même ensemble de données entraînent conjointement des modèles d'apprentissage automatique sans exposer les données brutes ou les paramètres des modèles.

Compléments

L'apprentissage vertical fédéré ou l'apprentissage fédéré basé sur les attributs s'applique aux cas où deux ensembles de données partagent un même identificateur mais avec des attributs différents.

Par exemple, dans le domaine médical, les résultats d'une analyse sanguine et ceux d'une analyse d'urine pourraient faire l'objet d'un apprentissage fédéré vertical.


Français

apprentissage fédéré vertical

apprentissage fédéré basé sur les attributs


Anglais

vertical federated learning


Contributeurs: Patrick Drouin, wiki