« Algorithme T-SNE » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' t-distributed stochastic neighbor embedding ''' t-distributed stoch... »)
 
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==en construction==
== Définition ==
L'algorithme t-SNE (t-distributed stochastic neighbor embedding) est une méthode de réduction de dimensions pour la visualisation d'un ensemble de points d'un espace à grande dimension dans un espace à deux ou trois dimensions.
 
== Compléments ==  
 
Les données traitées par t-SNE peuvent être visualisées sous la forme des nuages de points. L'algorithme non linéaire t-SNE utilise des techniques d'optimisation basées sur la théorie de l'information afin de conserver la distance relative entre les points pendant la réduction de dimensions. Ainsi, deux points qui sont proches (ou éloignés) dans l'espace d'origine doivent être proches (ou éloignés) dans l'espace de faible dimension. L'algorithme t-SNE se base sur une interprétation probabiliste des distances.
 
L'algorithme t-SNE a été développé en 2018 par Geoffrey Hinton et Laurens van der Maaten.
 
L'algorithme t-SNE a été utilisée pour de nombreuses applications : traitement automatique de la langue (similarité sémantique entre les mots), analyse de la musique, recherches médicales, bioinformatique, et le traitement de signaux. Cette méthode est souvent utilisée pour la visualisation de représentations de haut-niveau apprises par un réseau de neurones artificiel.


== Définition ==
XXXXXXXXX


== Français ==
== Français ==
''' XXXXXXXXX '''
''' t-SNE '''
 
''' algorithme t-SNE '''
 
''' méthode t-SNE '''


== Anglais ==
== Anglais ==
''' t-SNE '''
''' t-distributed stochastic neighbor embedding '''
''' t-distributed stochastic neighbor embedding '''


t-distributed stochastic neighbor embedding (t-SNE) is a machine learning algorithm for visualization based on Stochastic Neighbor Embedding originally developed by Sam Roweis and Geoffrey Hinton,[1] where Laurens van der Maaten proposed the t-distributed variant.[2] It is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points with high probability.
<!-- t-distributed stochastic neighbor embedding (t-SNE) is a machine learning algorithm for visualization based on Stochastic Neighbor Embedding originally developed by Sam Roweis and Geoffrey Hinton,[1] where Laurens van der Maaten proposed the t-distributed variant.[2] It is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. Specifically, it models each high-dimensional object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points with high probability.


The t-SNE algorithm comprises two main stages. First, t-SNE constructs a probability distribution over pairs of high-dimensional objects in such a way that similar objects are assigned a higher probability while dissimilar points are assigned a lower probability. Second, t-SNE defines a similar probability distribution over the points in the low-dimensional map, and it minimizes the Kullback–Leibler divergence (KL divergence) between the two distributions with respect to the locations of the points in the map. While the original algorithm uses the Euclidean distance between objects as the base of its similarity metric, this can be changed as appropriate.
The t-SNE algorithm comprises two main stages. First, t-SNE constructs a probability distribution over pairs of high-dimensional objects in such a way that similar objects are assigned a higher probability while dissimilar points are assigned a lower probability. Second, t-SNE defines a similar probability distribution over the points in the low-dimensional map, and it minimizes the Kullback–Leibler divergence (KL divergence) between the two distributions with respect to the locations of the points in the map. While the original algorithm uses the Euclidean distance between objects as the base of its similarity metric, this can be changed as appropriate.
Ligne 16 : Ligne 29 :
t-SNE has been used for visualization in a wide range of applications, including computer security research,[3] music analysis,[4] cancer research,[5] bioinformatics,[6] and biomedical signal processing.[7] It is often used to visualize high-level representations learned by an artificial neural network.[8]
t-SNE has been used for visualization in a wide range of applications, including computer security research,[3] music analysis,[4] cancer research,[5] bioinformatics,[6] and biomedical signal processing.[7] It is often used to visualize high-level representations learned by an artificial neural network.[8]


While t-SNE plots often seem to display clusters, the visual clusters can be influenced strongly by the chosen parameterization and therefore a good understanding of the parameters for t-SNE is necessary. Such "clusters" can be shown to even appear in non-clustered data,[9] and thus may be false findings. Interactive exploration may thus be necessary to choose parameters and validate results.[10][11] It has been demonstrated that t-SNE is often able to recover well-separated clusters, and with special parameter choices, approximates a simple form of spectral clustering.[12]
While t-SNE plots often seem to display clusters, the visual clusters can be influenced strongly by the chosen parameterization and therefore a good understanding of the parameters for t-SNE is necessary. Such "clusters" can be shown to even appear in non-clustered data,[9] and thus may be false findings. Interactive exploration may thus be necessary to choose parameters and validate results.[10][11] It has been demonstrated that t-SNE is often able to recover well-separated clusters, and with special parameter choices, approximates a simple form of spectral clustering.[12] -->


<small>
<small>


[https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding  Source : Wikipedia Machine Learning ]
[https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding  Source : Wikipedia]


[https://fr.wikipedia.org/wiki/Algorithme_t-SNE  Source : Wikipedia]


[[Catégorie:vocabulary]]
[[Catégorie:Publication]]
[[Catégorie:Wikipedia-IA‎]]
[[Catégorie:Wikipedia-IA‎]]

Version du 16 mai 2023 à 15:04

Définition

L'algorithme t-SNE (t-distributed stochastic neighbor embedding) est une méthode de réduction de dimensions pour la visualisation d'un ensemble de points d'un espace à grande dimension dans un espace à deux ou trois dimensions.

Compléments

Les données traitées par t-SNE peuvent être visualisées sous la forme des nuages de points. L'algorithme non linéaire t-SNE utilise des techniques d'optimisation basées sur la théorie de l'information afin de conserver la distance relative entre les points pendant la réduction de dimensions. Ainsi, deux points qui sont proches (ou éloignés) dans l'espace d'origine doivent être proches (ou éloignés) dans l'espace de faible dimension. L'algorithme t-SNE se base sur une interprétation probabiliste des distances.

L'algorithme t-SNE a été développé en 2018 par Geoffrey Hinton et Laurens van der Maaten.

L'algorithme t-SNE a été utilisée pour de nombreuses applications : traitement automatique de la langue (similarité sémantique entre les mots), analyse de la musique, recherches médicales, bioinformatique, et le traitement de signaux. Cette méthode est souvent utilisée pour la visualisation de représentations de haut-niveau apprises par un réseau de neurones artificiel.


Français

t-SNE

algorithme t-SNE

méthode t-SNE

Anglais

t-SNE

t-distributed stochastic neighbor embedding


Source : Wikipedia

Source : Wikipedia