« Lemmes de Borel-Cantelli » : différence entre les versions
m (Remplacement de texte — « Glossaire de la statistique DataFranca<br> » par « '''<span style="font-size:18px">GLOSSAIRE DE LA STATISTIQUE</span>''' ») |
m (Remplacement de texte : « '''<span style="font-size:18px">GLOSSAIRE DE LA STATISTIQUE</span>'''↵Catégorie:Statistiques » par « {{Modèle:Statistiques}} Catégorie:Statistiques ») |
||
Ligne 24 : | Ligne 24 : | ||
[https://www.mathprepa.fr/lemmes-de-borel-cantelli/ Source : Mathprepa ] | [https://www.mathprepa.fr/lemmes-de-borel-cantelli/ Source : Mathprepa ] | ||
{{Modèle:Statistiques}} | |||
[[Catégorie:Statistiques]] | [[Catégorie:Statistiques]] | ||
[[Catégorie:GRAND LEXIQUE FRANÇAIS]] | [[Catégorie:GRAND LEXIQUE FRANÇAIS]] |
Version du 4 janvier 2024 à 19:51
Définition
Le lemme de Borel-Cantelli est un théorème sur les suites d'événements. En général, il s'agit d'un résultat de la théorie de la mesure.
Un résultat connexe, parfois appelé le second lemme de Borel-Cantelli, est un inverse partiel du premier lemme de Borel-Cantelli. Ce lemme stipule que, sous certaines conditions, un événement aura une probabilité de zéro ou de un. En conséquence, il est le plus connu d'une classe de théorèmes similaires, connus sous le nom de lois zéro-un.
Il porte le nom d'Émile Borel et de Francesco Paolo Cantelli.
Français
lemmes de Borel-Cantelli
lemme de Borel-Cantelli
Anglais
Borel-Cantelli lemmas
Borel-Cantelli lemma
Contributeurs: Claire Gorjux, wiki