« Invariance par rotation » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Rotational Invariance''' In mathematics, a function defined on an i... »)
 
m (Remplacement de texte : « ↵<small> » par «  ==Sources== »)
 
(4 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
==en construction==
== Définition ==
== Définition ==
XXXXXXXXX
On dit qu'une fonction définie dans un espace de produit interne est invariante par rotation si sa valeur ne change pas lorsque des rotations arbitraires sont appliquées à son argument.


== Français ==
== Français ==
''' XXXXXXXXX '''
'''invariance par rotation'''
 
'''invariance de rotation'''


== Anglais ==
== Anglais ==
''' Rotational Invariance'''
'''rotational invariance'''


In mathematics, a function defined on an inner product space is said to have rotational invariance if its value does not change when arbitrary rotations are applied to its argument. For example, the function:


==Sources==


<small>
[https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/    Source : analyticsvidhya.com ]


[https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/   Source : analyticsvidhya.com ]
[https://www.btb.termiumplus.gc.ca/tpv2alpha/alpha-eng.html?lang=eng&i=1&srchtxt=invariance+de+rotation&codom2nd_wet=1#resultrecs  Source : TERMIUM Plus ]
 
[https://en.wikipedia.org/wiki/Rotational_invariance  Source : Wikipédia ]  




[[Catégorie:vocabulary]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]
[[Catégorie:analyticsvidhya]]

Dernière version du 27 janvier 2024 à 22:48

Définition

On dit qu'une fonction définie dans un espace de produit interne est invariante par rotation si sa valeur ne change pas lorsque des rotations arbitraires sont appliquées à son argument.

Français

invariance par rotation

invariance de rotation

Anglais

rotational invariance


Sources

Source : analyticsvidhya.com

Source : TERMIUM Plus

Source : Wikipédia

Contributeurs: Claire Gorjux, wiki