« Statistical relational learning » : différence entre les versions


(Page créée avec « == en construction == Catégorie:Vocabulary Catégorie:Intelligence artificielle‏‎ Catégorie:Wikipedia-IA‏‎ == Définition == ... == Français ==... »)
Balise : Éditeur de wikicode 2017
 
m (Remplacement de texte : « ↵<small> » par «  ==Sources== »)
 
(2 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
#REDIRECTION[[Apprentissage statistique]]
[[Catégorie:ENGLISH]]


== en construction ==
[[Catégorie:Vocabulary]]
[[Catégorie:Intelligence artificielle‏‎]]
[[Catégorie:Wikipedia-IA‏‎ ]]
== Définition ==
...
== Français ==
...
    
    
== Anglais ==
== Anglais ==
Ligne 16 : Ligne 8 :
is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty (which can be dealt with using statistical methods) and complex, relational structure.[291][292] Note that SRL is sometimes called Relational Machine Learning (RML) in the literature. Typically, the knowledge representation formalisms developed in SRL use (a subset of) first-order logic to describe relational properties of a domain in a general manner (universal quantification) and draw upon probabilistic graphical models (such as Bayesian networks or Markov networks) to model the uncertainty; some also build upon the methods of inductive logic programming.
is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty (which can be dealt with using statistical methods) and complex, relational structure.[291][292] Note that SRL is sometimes called Relational Machine Learning (RML) in the literature. Typically, the knowledge representation formalisms developed in SRL use (a subset of) first-order logic to describe relational properties of a domain in a general manner (universal quantification) and draw upon probabilistic graphical models (such as Bayesian networks or Markov networks) to model the uncertainty; some also build upon the methods of inductive logic programming.


<small>
==Sources==




[https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence  Source : Wikipedia]
[https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence  Source : Wikipedia]

Dernière version du 28 janvier 2024 à 12:07

Rediriger vers :


Anglais

Statistical relational learning

is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty (which can be dealt with using statistical methods) and complex, relational structure.[291][292] Note that SRL is sometimes called Relational Machine Learning (RML) in the literature. Typically, the knowledge representation formalisms developed in SRL use (a subset of) first-order logic to describe relational properties of a domain in a general manner (universal quantification) and draw upon probabilistic graphical models (such as Bayesian networks or Markov networks) to model the uncertainty; some also build upon the methods of inductive logic programming.

Sources

Source : Wikipedia

Contributeurs: wiki