Balise : Éditeur de wikicode 2017 |
|
(25 versions intermédiaires par 2 utilisateurs non affichées) |
Ligne 1 : |
Ligne 1 : |
| | ==Définition== |
| | En intelligence artificielle, la fouille arborescente Monte Carlo est un algorithme de recherche heuristique dans un arbre pour la prise de décision. Il est notamment employé dans les jeux. Chaque nœud de l'arbre de fouille mémorise deux nombres: le nombre de simulations gagnantes, et le nombre de simulations totales. |
|
| |
|
| == Domaine == | | ==Français== |
| [[Category:Vocabulary]]<br/>
| | '''fouille arborescente Monte Carlo ''' |
| [[Category:Intelligence artificielle]]Intelligence artificielle<br/>
| |
| [[Category:Résolution de problèmes]]Résolution de problèmes<br/>
| |
| [[Category:Algorithme de fouille]]Algorithme de fouille<br/>
| |
| [[Category:Coulombe]]Coulombe<br/>
| |
| [[Category:Scotty]]Scotty<br/>
| |
|
| |
|
| == Définition ==
| | '''recherche arborescente Monte Carlo ''' |
|
| |
|
| En intelligence artificielle, la fouille arborescente Monte Carlo est un algorithme de recherche heuristique dans un arbre pour la prise de décision. Il est notamment employé dans les jeux.
| | ==Anglais== |
| | '''Monte Carlo tree search '''<small> |
|
| |
|
| Chaque nœud de l'arbre de fouille mémorise deux nombres: le nombre de simulations gagnantes, et le nombre de simulations totales. L'algorithme de fouille arborescente Monte Carlo comporte quatre étapes: 1) Sélection: Choix d'un noeud feuille enfant en maintenant un compromis entre l'exploitation des noeuds prometteurs et l'exploration des noeuds moins visités. 2) Expansion: Si le noeud feuille visité n'est pas final, création d'un (ou plusieurs) enfant(s) en appliquant les règles du jeu et choix l'un des noeuds enfants. 3) Simulation: Simulation d'une partie au hasard depuis le noeud enfant, jusqu'à une configuration finale. 4) Rétropropagation (Backpropagation): Mise à jour des informations sur la branche partant du noeud enfant vers la racine en tenant compte du résultat de la simulation de la partie au hasard à l'étape 3.
| |
|
| |
|
| On peut citer l'utilisation de la fouille arborescente Monte Carlo en combinaison avec des réseaux de neurones profonds dans le programme AlphaGo de Deepmind qui a battu des champions au jeu de Go.
| | ==Sources== |
|
| |
|
| == Français ==
| | [https://fr.wikipedia.org/wiki/Recherche_arborescente_Monte-Carlo Source: Wikipedia] |
|
| |
|
| <h3>
| | [[Utilisateur:Claude COULOMBE | source : Claude Coulombe]] ([[Discussion utilisateur:Claude COULOMBE | discussion]]) |
| <poll> Choisissez parmi ces termes proposés :
| |
| fouille arborescente Monte Carlo
| |
| recherche arborescente Monte Carlo
| |
| </poll>
| |
| </h3>
| |
| <h3>Discussion:</h3> Pour le moment, le terme privilégié est «fouille arborescente Monte Carlo». <br>
| |
|
| |
|
| Source:
| | [[Category:GRAND LEXIQUE FRANÇAIS]] |
| | |
| https://fr.wikipedia.org/wiki/Recherche_arborescente_Monte-Carlo
| |
| | |
| | |
| == Anglais ==
| |
| | |
| === Monte Carlo tree search ===
| |
| In computer science, Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes, most notably those employed in game play. Two leading examples of Monte Carlo tree search are the computer game Total War: Rome II's implementation in their high level campaign AI[1] and recent computer Go programs,[2] followed by chess and shogi[3], as well as real-time video games and games with incomplete information such as poker (see history section).
| |
| | |
| <br/>
| |
| <br/>
| |
| <br/>
| |
| <br/>
| |
| <br/>
| |
| <br/>
| |
| <br/>
| |
Définition
En intelligence artificielle, la fouille arborescente Monte Carlo est un algorithme de recherche heuristique dans un arbre pour la prise de décision. Il est notamment employé dans les jeux. Chaque nœud de l'arbre de fouille mémorise deux nombres: le nombre de simulations gagnantes, et le nombre de simulations totales.
Français
fouille arborescente Monte Carlo
recherche arborescente Monte Carlo
Anglais
Monte Carlo tree search
Sources
Source: Wikipedia
source : Claude Coulombe ( discussion)