« Expectation Maximization » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Expectation Maximization''' Expectation maximization (EM) is an alg... »)
 
m (Remplacement de texte : « ↵↵↵↵ » par «   »)
 
(3 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
==en construction==
#REDIRECTION[[Algorithme EM]]


== Définition ==
[[Catégorie:ENGLISH]]
XXXXXXXXX


== Français ==
''' XXXXXXXXX '''


== Anglais ==
Voir [[algorithme EM]]
''' Expectation Maximization'''
 
Expectation maximization (EM) is an algorithm that finds the best estimates for model parameters when a dataset is missing information or has hidden latent variables. While this technique can be used to determine the maximum likelihood function, or the “best fit” model for a set of data, EM takes things a step further and works on incomplete data sets. This is achieved by inserting random values for the missing data points, and then estimating a second set of data. The new dataset is used to refine the guesses added to the first, with the process repeating until the algorithm’s termination criterion are met.
 
 
<small>




[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ]
[https://deepai.org/machine-learning-glossary-and-terms/expectation-maximizationSource : DeepAI.org ]
[[Catégorie:vocabulary]]

Dernière version du 29 janvier 2024 à 12:42

Contributeurs: Claire Gorjux, wiki