« Interpolation spatiale » : différence entre les versions


(Page créée avec « == en construction == Catégorie:Vocabulaire Catégorie:Exploration de données‏‎ Catégorie:Wikipedia‏‎-données == Définition == « Tout d'abord,... »)
Balise : Éditeur de wikicode 2017
 
m (Remplacement de texte : « ↵<small> » par «  ==Sources== »)
 
(8 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
== en construction ==
[[Catégorie:Vocabulaire]]
[[Catégorie:Exploration de données‏‎]]
[[Catégorie:Wikipedia‏‎-données]]
== Définition ==
== Définition ==
« Tout d'abord, qu'est-ce que l'interpolation spatiale ? C'est le processus d'estimation d'une valeur à une localisation (x,y) à partir de valeurs placées à d'autres localisations (x1,y1)...(xn,yn) »
En analyse numérique, l'interpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. L'interpolation spatiale est rendue possible et utile par l'hétérogénéité et la dépendance spatiales. Si tout était homogène l'interpolation serait inutile, si tous les phénomènes spatiaux étaient indépendants l'interpolation serait impossible.
— SOM, SIG-o-Matic
 
L'interpolation spatiale est rendue possible et utile par l'hétérogénéité et la dépendance spatiales. Si tout était homogène l'interpolation serait inutile, si tous les phénomènes spatiaux étaient indépendants l'interpolation serait impossible


== Français ==
'''interpolation spatiale ''' 


== Français ==
'''interpolation multivariée '''   
'''Interpolation spatiale '''
    
    
    
== Anglais ==
== Anglais ==
Ligne 20 : Ligne 11 :




==Sources==
[https://fr.wikipedia.org/wiki/Interpolation_multivari%C3%A9e#:~:text=En%20analyse%20num%C3%A9rique%2C%20l'interpolation,de%20plus%20d'une%20variable  Source : Wikipedia, ''Interpolation multivariée''. ]




<small>


[https://fr.wikipedia.org/wiki/Glossaire_de_l%27exploration_de_donn%C3%A9es  Source : Wikipedia - glossaire de l'exploration des données ]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]

Dernière version du 27 janvier 2024 à 22:59

Définition

En analyse numérique, l'interpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. L'interpolation spatiale est rendue possible et utile par l'hétérogénéité et la dépendance spatiales. Si tout était homogène l'interpolation serait inutile, si tous les phénomènes spatiaux étaient indépendants l'interpolation serait impossible.

Français

interpolation spatiale

interpolation multivariée

Anglais

spatial interpolation


Sources

Source : Wikipedia, Interpolation multivariée.

Contributeurs: Jacques Barolet, wiki