« Caractéristique creuse » : différence entre les versions


Aucun résumé des modifications
m (Remplacement de texte : « ↵↵==Sources== » par «  ==Sources== »)
 
(20 versions intermédiaires par 4 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
__NOTOC__
==Définition==
== Domaine ==
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Vocabulaire2]]
[[Category:Google2]]
[[Category:Apprentissage profond2]]
[[Category:scotty2]]
<br />
 
== Définition ==
Vecteur de caractéristique dont les valeurs sont la plupart nulles ou vides. Par exemple, un vecteur contenant une seule valeur 1 et un million de valeurs 0 est dit creux. Autre exemple : les mots d'une requête de recherche peuvent aussi être une caractéristique creuse. En effet, il existe de très nombreux mots possibles dans une langue donnée, mais seuls quelques-uns d'entre eux peuvent apparaître dans une requête.
Vecteur de caractéristique dont les valeurs sont la plupart nulles ou vides. Par exemple, un vecteur contenant une seule valeur 1 et un million de valeurs 0 est dit creux. Autre exemple : les mots d'une requête de recherche peuvent aussi être une caractéristique creuse. En effet, il existe de très nombreux mots possibles dans une langue donnée, mais seuls quelques-uns d'entre eux peuvent apparaître dans une requête.


À comparer à la caractéristique dense.
À comparer à la '''[[caractéristique dense]]'''.
 
 
<br />
== Termes privilégiés ==
=== caractéristique creuse===
 


<br />
==Français==
== Anglais ==
'''caractéristique creuse'''   


=== sparse feature===
==Anglais==
'''sparse feature'''
==Sources==
[https://developers.google.com/machine-learning/glossary/ Source : Google machine learning glossary]


<br/>
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]
<br/>
[[Catégorie:Apprentissage profond]]
<br/>
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
<br/>
<br/>
<br/>

Dernière version du 30 août 2024 à 17:57

Définition

Vecteur de caractéristique dont les valeurs sont la plupart nulles ou vides. Par exemple, un vecteur contenant une seule valeur 1 et un million de valeurs 0 est dit creux. Autre exemple : les mots d'une requête de recherche peuvent aussi être une caractéristique creuse. En effet, il existe de très nombreux mots possibles dans une langue donnée, mais seuls quelques-uns d'entre eux peuvent apparaître dans une requête.

À comparer à la caractéristique dense.

Français

caractéristique creuse

Anglais

sparse feature

Sources

Source : Google machine learning glossary