« Generative Adversarial Networks » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Generative adversarial network''' A generative adversarial network... »)
 
(Destination de redirection modifiée de Réseau antagoniste génératif (RAG) en Réseau antagoniste génératif)
Balise : Cible de la redirection modifiée
 
(5 versions intermédiaires par 2 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
==en construction==
#REDIRECTION [[Réseau antagoniste génératif]]


== Définition ==
[[Catégorie:ENGLISH]]
XXXXXXXXX
 
== Français ==
''' XXXXXXXXX '''
 
== Anglais ==
''' Generative adversarial network'''
 
A generative adversarial network (GAN) is a class of machine learning frameworks designed by Ian Goodfellow and his colleagues in 2014.[1] Two neural networks contest with each other in a game (in the form of a zero-sum game, where one agent's gain is another agent's loss).
 
Given a training set, this technique learns to generate new data with the same statistics as the training set. For example, a GAN trained on photographs can generate new photographs that look at least superficially authentic to human observers, having many realistic characteristics. Though originally proposed as a form of generative model for unsupervised learning, GANs have also proven useful for semi-supervised learning,[2] fully supervised learning,[3] and reinforcement learning.[4]
 
The core idea of a GAN is based on the "indirect" training through the discriminator, which itself is also being updated dynamically.[5] This basically means that the generator is not trained to minimize the distance to a specific image, but rather to fool the discriminator. This enables the model to learn in an unsupervised manner.
 
<small>
 
[https://en.wikipedia.org/wiki/Generative_adversarial_network  Source : Wikipedia  Machine Learning ]
 
 
[[Catégorie:vocabulary]]
[[Catégorie:Wikipedia-IA‎]]

Dernière version du 10 août 2022 à 19:49

Contributeurs: Imane Meziani, wiki