« Bootstrap aggregating » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Bootstrap aggregating ''' Bootstrap aggregating, also called baggin... »)
 
m (Remplacement de texte : « ↵↵==Sources== » par «  ==Sources== »)
 
(4 versions intermédiaires par le même utilisateur non affichées)
Ligne 1 : Ligne 1 :
#REDIRECTION[[Ré-échantillonnage avec remise ensembliste]]
[[Catégorie:ENGLISH]]
==en construction==
==en construction==


Ligne 11 : Ligne 15 :


Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach.
Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach.
 
==Sources==
 
 
<small>


[XXXXXXXXXX  Source :  Source : Wikipedia  ]
[XXXXXXXXXX  Source :  Source : Wikipedia  ]


[https://en.wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms  Source : Wikipedia Machine learning algorithms  ]
[https://en.wikipedia.org/wiki/Outline_of_machine_learning#Machine_learning_algorithms  Source : Wikipedia Machine learning algorithms  ]
[[Catégorie:vocabulary]]
[[Catégorie:Wikipedia-IA‏‎]]

Dernière version du 30 août 2024 à 13:59


en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Bootstrap aggregating

Bootstrap aggregating, also called bagging (from bootstrap aggregating), is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging approach.

Sources

[XXXXXXXXXX Source : Source : Wikipedia ]

Source : Wikipedia Machine learning algorithms

Contributeurs: wiki