« Optimisation par essaim de particules » : différence entre les versions


m (Remplacement de texte — « Termes privilégiés » par « Français »)
m (Remplacement de texte : « ↵<small> » par «  ==Sources== »)
 
(28 versions intermédiaires par 3 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
==Définition==
L’optimisation par essaim de particules (OEP) est une méthode d’optimisation stochastique basée sur la reproduction d’un comportement social d'animaux dans un essaim.


== Domaine ==
Le mouvement de chaque particule est influencé par sa position et son histoire, mais est également influencée par son voisinage. On s'attend à ce que cela déplace l'essaim vers les meilleures solutions.
[[Category:Vocabulary]]
== Définition ==


==Français==
'''optimisation par essaim de particules''' 


==Anglais==
'''Particle swarm optimization'''


== Français ==
==Sources==


NOTA L'algorithme OEP est initialisé par une population de solutions potentielles aléatoires, interprétées comme des particules se déplaçant dans l'espace de recherche. Chaque particule est attirée vers sa meilleure position découverte par le passé ainsi que vers la meilleure position découverte par les particules de son voisinage (ou de tout l'essaim, dans la version globale de l'algorithme).
== Anglais ==


=== Particle swarm optimization ===
[https://archipel.uqam.ca/6189/1/D2572.pdf Source : Nouaouria, Nabila, archipel.uqam.ca]
In computer science, particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions.


PSO is originally attributed to Kennedy, Eberhart and Shi[1][2] and was first intended for simulating social behaviour,[3] as a stylized representation of the movement of organisms in a bird flock or fish school. The algorithm was simplified and it was observed to be performing optimization. The book by Kennedy and Eberhart[4] describes many philosophical aspects of PSO and swarm intelligence. An extensive survey of PSO applications is made by Poli.[5][6] Recently, a comprehensive review on theoretical and experimental works on PSO has been published by Bonyadi and Michalewicz.[7]


PSO is a metaheuristic as it makes few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, metaheuristics such as PSO do not guarantee an optimal solution is ever found. Also, PSO does not use the gradient of the problem being optimized, which means PSO does not require that the optimization problem be differentiable as is required by classic optimization methods such as gradient descent and quasi-newton methods.
[https://www.24pm.com/117-definitions/459-optimisation-des-essaim-de-particules      Source : 24pm Academy]


<br/>
[https://www.btb.termiumplus.gc.ca/tpv2alpha/alpha-fra.html?lang=fra&i=1&srchtxt=optimisation+par+essaim+de+particules+&index=alt&codom2nd_wet=1#resultrecs  Source : TERMIUM Plus  ]
<br/>
 
<br/>
 
<br/>
 
<br/>
[[Category:Intelligence artificielle]] 
<br/>
[[Category:GRAND LEXIQUE FRANÇAIS]]
<br/>

Dernière version du 28 janvier 2024 à 11:07

Définition

L’optimisation par essaim de particules (OEP) est une méthode d’optimisation stochastique basée sur la reproduction d’un comportement social d'animaux dans un essaim.

Le mouvement de chaque particule est influencé par sa position et son histoire, mais est également influencée par son voisinage. On s'attend à ce que cela déplace l'essaim vers les meilleures solutions.

Français

optimisation par essaim de particules

Anglais

Particle swarm optimization

Sources

NOTA L'algorithme OEP est initialisé par une population de solutions potentielles aléatoires, interprétées comme des particules se déplaçant dans l'espace de recherche. Chaque particule est attirée vers sa meilleure position découverte par le passé ainsi que vers la meilleure position découverte par les particules de son voisinage (ou de tout l'essaim, dans la version globale de l'algorithme).

Source : Nouaouria, Nabila, archipel.uqam.ca


Source : 24pm Academy

Source : TERMIUM Plus