« Regroupement de données » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
 
(5 versions intermédiaires par 3 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==


Le regroupement de données (clustering) est une méthode d'''[[Analyse des données|analyse des données]]'' dans laquelle les données sont classées, par regroupement, en groupes plus homogènes, ou par division (on parle alors de ''[[Partitionnement de données|partitionnement de données]]'') selon une mesure de similarité qui calcule la distance entre paires d'exemples de données. Ainsi les données d’un même groupe partagent des attributs communs.  
Le regroupement de données (clustering) est une méthode d''''[[Analyse des données|analyse des données]]''' dans laquelle les données sont classées, par regroupement, en groupes plus homogènes, ou par division (on parle alors de partitionnement de données) selon une mesure de similarité qui calcule la distance entre paires d'exemples de données. Ainsi les données d’un même groupe partagent des attributs communs.  


Le résultat est l'appartenance à un groupe ou une probabilité d'appartenance à chacun des groupes formés par l'algorithme. Cette méthode d’analyse de données relève de l’''[[Apprentissage non supervisé|apprentissage non supervisé]]''.
Le résultat est l'appartenance à un groupe ou une probabilité d'appartenance à chacun des groupes formés par l'algorithme. Cette méthode d’analyse de données relève de l’'''[[Apprentissage non supervisé|apprentissage non supervisé]]'''.


==Compléments==
==Compléments==
Note - Le regroupement de données (''clustering'') est la principale tâche de l’''[[Apprentissage non supervisé|apprentissage non supervisé]]'' en [[analyse des données]].  
Note - Le regroupement de données (''clustering'') est la principale tâche de l’'''[[Apprentissage non supervisé|apprentissage non supervisé]]''' en '''[[analyse des données]]'''.  


En Amérique du Nord, on utilise davantage le concept de regroupement (clustering), de création de groupes (clusters) de données, alors qu'en Europe on préfère le concept de répartition ou division en groupes (partitionnement) de données.
En Amérique du Nord, on utilise davantage le concept de regroupement (clustering) ou de création de groupes (clusters) de données, alors qu'en Europe on préfère le concept de répartition ou division en groupes (partitionnement) de données.


== Français ==
== Français ==


'''regroupement de données   '''   
'''regroupement de données'''   


'''groupement de données'''    
'''groupement de données'''    


'''partitionnement de données '''  
'''agrégation de données'''


'''segmentation de données   '''   
'''partitionnement de données'''  
 
'''segmentation de données'''   


== Anglais ==
== Anglais ==
'''clustering  '''
'''clustering '''


'''data clustering   '''
'''data clustering'''


'''binning'''
'''binning'''


<small>
==Sources==
 
[http://gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=26557645 Source : GDT - Traitement des données ]


[http://gdt.oqlf.gouv.qc.ca/ficheOqlf.aspx?Id_Fiche=26557645  Source : GDT - Traitement des données ]
{{Modèle:GDT}}


[[Catégorie:Traitement de données]]
[[Catégorie:Traitement de données]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]

Dernière version du 28 mai 2024 à 17:16

Définition

Le regroupement de données (clustering) est une méthode d'analyse des données dans laquelle les données sont classées, par regroupement, en groupes plus homogènes, ou par division (on parle alors de partitionnement de données) selon une mesure de similarité qui calcule la distance entre paires d'exemples de données. Ainsi les données d’un même groupe partagent des attributs communs.

Le résultat est l'appartenance à un groupe ou une probabilité d'appartenance à chacun des groupes formés par l'algorithme. Cette méthode d’analyse de données relève de l’apprentissage non supervisé.

Compléments

Note - Le regroupement de données (clustering) est la principale tâche de l’apprentissage non supervisé en analyse des données.

En Amérique du Nord, on utilise davantage le concept de regroupement (clustering) ou de création de groupes (clusters) de données, alors qu'en Europe on préfère le concept de répartition ou division en groupes (partitionnement) de données.

Français

regroupement de données

groupement de données 

agrégation de données

partitionnement de données 

segmentation de données

Anglais

clustering

data clustering

binning

Sources

Source : GDT - Traitement des données