« Théorème de Darmois-Skitovich » : différence entre les versions
Aucun résumé des modifications |
m (Remplacement de texte : « Catégorie:GRAND LEXIQUE FRANÇAIS » par « ») |
||
(7 versions intermédiaires par 2 utilisateurs non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
== Définition == | == Définition == | ||
Le théorème de Darmois-Skitovich est l'un des théorèmes de caractérisation les plus célèbres de la statistique mathématique. Il caractérise la distribution normale (la distribution gaussienne) par l'indépendance de deux formes linéaires de variables aléatoires indépendantes. Ce théorème a été prouvé indépendamment par G. Darmois et V. P. Skitovich en 1953. | Le théorème de Darmois-Skitovich est l'un des théorèmes de caractérisation les plus célèbres de la statistique mathématique. Il caractérise la [[distribution normale]] (la distribution gaussienne) par l'indépendance de deux formes linéaires de variables aléatoires indépendantes. Ce théorème a été prouvé indépendamment par G. Darmois et V. P. Skitovich en 1953. | ||
== Français == | == Français == | ||
Ligne 9 : | Ligne 9 : | ||
==Sources== | |||
[ | [https://www.isi-web.org/glossary?language=2 Source : ISI Glossaire ] | ||
[https://isi.cbs.nl/glossary/term875.htm Source : ISI ] | |||
[https://en.wikipedia.org/wiki/Darmois–Skitovich_theorem Source : Wikipedia ] | [https://en.wikipedia.org/wiki/Darmois–Skitovich_theorem Source : Wikipedia ] | ||
{{Modèle:Statistiques}} | |||
<br> | |||
[[Catégorie:Statistiques]] | [[Catégorie:Statistiques]] | ||
Dernière version du 23 août 2024 à 20:16
Définition
Le théorème de Darmois-Skitovich est l'un des théorèmes de caractérisation les plus célèbres de la statistique mathématique. Il caractérise la distribution normale (la distribution gaussienne) par l'indépendance de deux formes linéaires de variables aléatoires indépendantes. Ce théorème a été prouvé indépendamment par G. Darmois et V. P. Skitovich en 1953.
Français
théorème de Darmois-Skitovich
Anglais
Darmois-Skitovich theorem
Sources
Contributeurs: Maya Pentsch, wiki