« Mini-lot » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
m (Remplacement de texte : « Category:Termino 2019 » par «  »)
 
(30 versions intermédiaires par 4 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
__NOTOC__
==Définition==
== Domaine ==
Petit nombre d'exemples sélectionnés au hasard parmi l'ensemble des exemples d'entraînement et traités simultanément lors d'une itération du processus d'apprentissage.
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Vocabulaire2]]
[[Category:Google2]]
[[Category:Apprentissage profond2]]
[[Catégorie:App-profond-livre]]
[[Category:scotty2]]
<br />


== Définition ==
Remarque : la taille d'un mini-lot varie généralement entre 10 et 1 000 exemples. L'utilisation des mini-lots permet de calculer plus efficacement la perte que sur l'ensemble des exemples d'apprentissage.
Petit sous-ensemble, sélectionné aléatoirement, du lot complet d'exemples exécutés simultanément dans une même itération d'apprentissage ou d'inférence. La taille de lot d'un mini-lot est généralement comprise entre 10 et 1 000. Il est bien plus efficace de calculer la perte pour un mini-lot que pour l'ensemble entier des données d'apprentissage.


==Français==
'''mini-lot''' 


<br />
==Anglais==
== Français ==
'''mini-batch'''
=== mini-lot  <small>n.m.</small> ===


'''minibatch'''


<br />
==Sources==
Source : Goodfellow, Ian; Bengio, Yoshua et Aaron Courville (2018), ''Apprentissage profond'', Paris, Massot éditions, 800 pages.


== Anglais ==
[https://developers.google.com/machine-learning/glossary/ Source : ''Google machine learning glossary'']


=== mini-batch===
[[Utilisateur:Patrickdrouin | Source : Termino]]
=== minibatch ===


 
[[Category:GRAND LEXIQUE FRANÇAIS]]
<br/>
[[Category:Apprentissage profond]]
<br/>
<br/>
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
<br/>
[https://www.leslibraires.ca/livres/l-apprentissage-profond-ian-goodfellow-9791097160432.html    Source:L'APPRENTISSAGE PROFOND]
<br/>
<br/>
<br/>
 
<br/>

Dernière version du 11 octobre 2024 à 08:32

Définition

Petit nombre d'exemples sélectionnés au hasard parmi l'ensemble des exemples d'entraînement et traités simultanément lors d'une itération du processus d'apprentissage.

Remarque : la taille d'un mini-lot varie généralement entre 10 et 1 000 exemples. L'utilisation des mini-lots permet de calculer plus efficacement la perte que sur l'ensemble des exemples d'apprentissage.

Français

mini-lot

Anglais

mini-batch

minibatch

Sources

Source : Goodfellow, Ian; Bengio, Yoshua et Aaron Courville (2018), Apprentissage profond, Paris, Massot éditions, 800 pages.

Source : Google machine learning glossary

Source : Termino