« Série de Taylor » : différence entre les versions


m (Remplacement de texte : « ↵<small> » par «  ==Sources== »)
m (Remplacement de texte : « Catégorie:GRAND LEXIQUE FRANÇAIS » par «  »)
 
(Une version intermédiaire par un autre utilisateur non affichée)
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
La série de Taylor d'une [[fonction]] est une somme infinie de termes qui sont exprimés en termes de dérivées de la fonction en un point unique. Pour la plupart des fonctions courantes, la fonction et la somme de sa série de Taylor sont égales près de ce point.
La série de Taylor d'une '''[[fonction]]''' est une somme infinie de termes qui sont exprimés en termes de dérivées de la fonction en un point unique. Pour la plupart des fonctions courantes, la fonction et la somme de sa série de Taylor sont égales près de ce point.


== Français ==
== Français ==
Ligne 14 : Ligne 14 :
<br>
<br>
[[Catégorie:Statistiques]]
[[Catégorie:Statistiques]]
[[Catégorie:GRAND LEXIQUE FRANÇAIS]]

Dernière version du 23 août 2024 à 19:52

Définition

La série de Taylor d'une fonction est une somme infinie de termes qui sont exprimés en termes de dérivées de la fonction en un point unique. Pour la plupart des fonctions courantes, la fonction et la somme de sa série de Taylor sont égales près de ce point.

Français

série de Taylor

Anglais

Taylor series

Sources

Source : Wikipédia


GLOSSAIRE DE LA STATISTIQUE

Isi-logo-stats.jpg

Contributeurs: Evan Brach, wiki