« Algorithme de Levenberg-Marquardt » : différence entre les versions


m (Remplacement de texte : « * [https:// » par « [https:// »)
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==Définition==
==Définition==
L’algorithme de Levenberg-Marquardt, ou algorithme LM, permet d'obtenir une solution numérique au problème de minimisation d'une fonction, souvent non linéaire et dépendant de plusieurs variables. L'algorithme repose sur les méthodes derrière l'algorithme de Gauss-Newton et l'algorithme du gradient. Plus stable que celui de Gauss-Newton, il trouve une solution même s'il est démarré très loin d'un minimum. Cependant, pour certaines fonctions très régulières, il peut converger légèrement moins vite. L'algorithme fut développé par Kenneth Levenberg, puis publié par Donald Marquardt.
L’algorithme de Levenberg-Marquardt, ou algorithme LM, permet d'obtenir une solution numérique au problème de minimisation d'une fonction, souvent non linéaire et dépendant de plusieurs variables. L'algorithme repose sur les méthodes derrière l''''[[algorithme de Gauss-Newton]]''' et l''''[[algorithme du gradient]]'''. Plus stable que celui de Gauss-Newton, il trouve une solution même s'il est démarré très loin d'un minimum. Cependant, pour certaines fonctions très régulières, il peut converger légèrement moins vite. L'algorithme fut développé par Kenneth Levenberg, puis publié par Donald Marquardt.


==Français==
==Français==
Ligne 8 : Ligne 7 :
==Anglais==
==Anglais==
'''Levenberg-Marquardt algorithm'''
'''Levenberg-Marquardt algorithm'''
==Sources==
==Sources==



Version du 19 avril 2024 à 10:13

Définition

L’algorithme de Levenberg-Marquardt, ou algorithme LM, permet d'obtenir une solution numérique au problème de minimisation d'une fonction, souvent non linéaire et dépendant de plusieurs variables. L'algorithme repose sur les méthodes derrière l'algorithme de Gauss-Newton et l'algorithme du gradient. Plus stable que celui de Gauss-Newton, il trouve une solution même s'il est démarré très loin d'un minimum. Cependant, pour certaines fonctions très régulières, il peut converger légèrement moins vite. L'algorithme fut développé par Kenneth Levenberg, puis publié par Donald Marquardt.

Français

algorithme de Levenberg-Marquardt

Anglais

Levenberg-Marquardt algorithm

Sources

Source: Wikipedia IA, Algorithme de Levenberg-Marquardt.

Contributeurs: Evan Brach, Jacques Barolet, wiki