« Séparateur à vaste marge » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
 
Ligne 1 : Ligne 1 :
==Définition==
==Définition==
Le séparateur à vaste marge (SVM) est un algorithme d''''[[Apprentissage supervisé|apprentissage supervisé]]''' issu d'une généralisation des classificateurs linéaires et destiné à résoudre des problèmes de [[classification]] et de [[régression]].   
Le séparateur à vaste marge ou SVM est un '''[[algorithme]]''' d''''[[Apprentissage supervisé|apprentissage supervisé]]''' issu d'une généralisation des classificateurs linéaires et destiné à résoudre des problèmes de '''[[classification]]''' et de '''[[régression]]'''.   


Créés au milieu des années 90 par Vladimir Vapnik, les SVM ont été appliqués à de nombreux domaines: bio-informatique, recherche d'information, [[vision par ordinateur]], finance, etc.  
Créés au milieu des années 90 par Vladimir Vapnik, les SVM ont été appliqués à de nombreux domaines: bio-informatique, recherche d'information, '''[[vision par ordinateur]]''', finance, etc.  


Selon les données, la performance des séparateurs à vaste marge peut être parfois du même ordre, ou même supérieure, à celle d'un '''[[Réseau de neurones artificiels|réseau de neurones]]''' ou d'un modèle de mélanges gaussiens.
Selon les '''[[données]]''', la performance des séparateurs à vaste marge peut être parfois du même ordre, ou même supérieure, à celle d'un '''[[Réseau de neurones artificiels|réseau de neurones]]''' ou d'un '''[[modèle de mélange gaussien]]'''.


Voir aussi : [[classificateur]]
Voir aussi '''[[classificateur]]'''


==Compléments==
==Compléments==
Ligne 13 : Ligne 13 :
Note: on dit séparateur à « vaste marge » et non séparateur à « vastes marges » car il n'y a qu'une seule marge.
Note: on dit séparateur à « vaste marge » et non séparateur à « vastes marges » car il n'y a qu'une seule marge.
<hr/>
<hr/>
Les SVM reposent sur une mesure de similarité calculé avec un noyau (en anglais, kernel). On dira que les SVM font partie des méthodes à noyau. En apprentissage automatique, l''''[[Astuce du noyau| astuce du noyau]]''' permet d'utiliser un classificateur linéaire pour résoudre un problème non linéaire.
Les SVM reposent sur une mesure de similarité calculé avec un noyau (en anglais, kernel). On dira que les SVM font partie des méthodes à noyau. En apprentissage automatique, l''''[[Astuce du noyau|astuce du noyau]]''' permet d'utiliser un classificateur linéaire pour résoudre un problème non linéaire.


==Français==
==Français==

Dernière version du 13 janvier 2025 à 18:30

Définition

Le séparateur à vaste marge ou SVM est un algorithme d'apprentissage supervisé issu d'une généralisation des classificateurs linéaires et destiné à résoudre des problèmes de classification et de régression.

Créés au milieu des années 90 par Vladimir Vapnik, les SVM ont été appliqués à de nombreux domaines: bio-informatique, recherche d'information, vision par ordinateur, finance, etc.

Selon les données, la performance des séparateurs à vaste marge peut être parfois du même ordre, ou même supérieure, à celle d'un réseau de neurones ou d'un modèle de mélange gaussien.

Voir aussi classificateur

Compléments

En français, on préfère le terme « séparateur à vaste marge » qui conserve l'acronyme «SVM», aussi parfois « machine à vecteurs de support », « classificateur à vaste marge » ou « classificateur à large marge ».

Note: on dit séparateur à « vaste marge » et non séparateur à « vastes marges » car il n'y a qu'une seule marge.


Les SVM reposent sur une mesure de similarité calculé avec un noyau (en anglais, kernel). On dira que les SVM font partie des méthodes à noyau. En apprentissage automatique, l'astuce du noyau permet d'utiliser un classificateur linéaire pour résoudre un problème non linéaire.

Français

séparateur à vaste marge

SVM

machine à vecteurs de support (usage plus rare)

classificateur à vaste marge (usage plus rare)

classificateur à large marge (usage plus rare)

méthode à noyau

Anglais

support vector machine

SVM

kernel method

Sources

Source: Canu, Stéphane. (2006). Apprentissage et noyaux : séparateur à vaste marge (SVM). Revue de l'Electricité et de l'Electronique. -. 69. 10.3845/ree.2006.062.

Source: Lebrun, Gilles (2006). Sélection de modèles pour la classification supervisée avec des SVM (Séparateurs à Vaste Marge), thèse de doctorat, Université de Caen Basse-Normandie, 311 pages.

Source: Kharroubi, Jamal (2002). Étude de techniques de classement ”Machines à vecteurs supports” pour la vérification automatique du locuteur, thèse de doctorat, Télécom ParisTech, 129 pages.

Source: Fernandez, Rodrigo (1999). Machines a vecteurs de support pour la reconnaissance des formes : proprietes et applications, thèse de doctorat. Université Paris 13.

Source: Opendatascience.com

Source: Wikipedia, Machine à vecteurs de support

Source: Termino



101 MOTS DE L' IA
Ce terme est sélectionné pour le livre « Les 101 mots de l'intelligence artificielle »