« Données exclues » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 6 : Ligne 6 :
[[Category:Apprentissage profond]]Apprentissage profond<br />
[[Category:Apprentissage profond]]Apprentissage profond<br />
[[Category:scotty2]]
[[Category:scotty2]]
<br />


== Définition ==
== Définition ==
Exemples intentionnellement non utilisés (exclus) pendant l'apprentissage. L'ensemble de données de validation et l'ensemble de données d'évaluation sont des exemples de données exclues. Les données exclues aident à évaluer la capacité d'un modèle à être généralisé à des données autres que celles utilisées pour l'apprentissage. La perte d'un ensemble de données non vues jusqu'à présent est estimé plus précisément par la perte de l'ensemble de données exclues que par celui de l'ensemble d'apprentissage.
Exemples intentionnellement non utilisés (exclus) pendant l'apprentissage. L'ensemble de données de validation et l'ensemble de données d'évaluation sont des exemples de données exclues. Les données exclues aident à évaluer la capacité d'un modèle à être généralisé à des données autres que celles utilisées pour l'apprentissage. La perte d'un ensemble de données non vues jusqu'à présent est estimé plus précisément par la perte de l'ensemble de données exclues que par celui de l'ensemble d'apprentissage.
<br />


== Français ==
== Français ==
''' données exclues  <small>n.f.</small>'''
''' données exclues  <small>n.f.</small>'''


== Anglais ==
'''  holdout data '''


<br />


== Anglais ==


'''  holdout data '''


<br/>
<br/>
<br/>
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
<br/>
<br/>
<br/>

Version du 15 juin 2019 à 20:10

Domaine

Apprentissage profond

Définition

Exemples intentionnellement non utilisés (exclus) pendant l'apprentissage. L'ensemble de données de validation et l'ensemble de données d'évaluation sont des exemples de données exclues. Les données exclues aident à évaluer la capacité d'un modèle à être généralisé à des données autres que celles utilisées pour l'apprentissage. La perte d'un ensemble de données non vues jusqu'à présent est estimé plus précisément par la perte de l'ensemble de données exclues que par celui de l'ensemble d'apprentissage.

Français

données exclues n.f.

Anglais

holdout data



Source: Google machine learning glossary