« Optimiseur » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :
__NOTOC__
== Domaine ==
== Domaine ==
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:GRAND LEXIQUE FRANÇAIS]]
Ligne 5 : Ligne 4 :
[[Category:Google2]]
[[Category:Google2]]
[[Category:Apprentissage profond]]Apprentissage profond<br />
[[Category:Apprentissage profond]]Apprentissage profond<br />
<br />


== Définition ==
== Définition ==
Implémentation particulière de l'algorithme de descente de gradient. La classe de base de TensorFlow pour les optimiseurs est tf.train.Optimizer. Différents optimiseurs (sous-classes de tf.train.Optimizer) tiennent compte des concepts tels que :
Implémentation particulière de l'algorithme de descente de gradient. La classe de base de TensorFlow pour les optimiseurs est tf.train.Optimizer. Différents optimiseurs (sous-classes de tf.train.Optimizer) tiennent compte des concepts tels que :
*    le moment (Momentum) ;
*    le moment (Momentum) ;
Ligne 16 : Ligne 13 :
Il est même possible d'imaginer un optimiseur reposant sur un réseau de neurones.
Il est même possible d'imaginer un optimiseur reposant sur un réseau de neurones.


== Français ==
''' optimiseur n.m.'''


<br />
== Anglais ==
 
'''  optimizer'''
== Français ==
=== optimiseur n.m.===




<br />


== Anglais ==


===  optimizer===


<br/>
<br/>
<br/>
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
<br/>
<br/>[https://datafranca.org/lexique/optimiseur/        ''Publié : datafranca.org'' ]
<br/>
<br/>
<br/>

Version du 15 juin 2019 à 21:48

Domaine

Apprentissage profond

Définition

Implémentation particulière de l'algorithme de descente de gradient. La classe de base de TensorFlow pour les optimiseurs est tf.train.Optimizer. Différents optimiseurs (sous-classes de tf.train.Optimizer) tiennent compte des concepts tels que :

  • le moment (Momentum) ;
  • la fréquence de mise à jour (AdaGrad = descente de gradient adaptative ; Adam = adaptative avec Momentum ; RMSProp) ;
  • la parcimonie/régularisation (Ftrl) ;
  • des opérations mathématiques plus complexes (proximal et autres).

Il est même possible d'imaginer un optimiseur reposant sur un réseau de neurones.

Français

optimiseur n.m.

Anglais

optimizer



Source: Google machine learning glossary