« Réseau récurrent à portes » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
== Domaine == | == Domaine == | ||
[[Category:Vocabulary]] Vocabulary | [[Category:Vocabulary]] Vocabulary<br /> | ||
[[Catégorie:Apprentissage profond]] Apprentissage profond | [[Catégorie:Apprentissage profond]] Apprentissage profond | ||
== Définition == | == Définition == | ||
Version du 18 mars 2018 à 09:29
Domaine
Vocabulary
Apprentissage profond
Définition
Termes privilégiés
terme
Anglais
GRU
The Gated Recurrent Unit is a simplified version of an LSTM unit with fewer parameters. Just like an LSTM cell, it uses a gating mechanism to allow RNNs to efficiently learn long-range dependency by preventing the vanishing gradient problem. The GRU consists of a reset and update gate that determine which part of the old memory to keep vs. update with new values at the current time step. • Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation • Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano
Contributeurs: Claude Coulombe, Jacques Barolet, Patrick Drouin, wiki