« Probabilité algorithmique » : différence entre les versions
Aucun résumé des modifications |
m (Remplacement de texte — « Termes privilégiés » par « Français ») |
||
Ligne 8 : | Ligne 8 : | ||
== | == Français == | ||
Version du 31 décembre 2018 à 14:42
Domaine
Vocabulary
Définition
Français
Anglais
Algorithmic probability
In algorithmic information theory, algorithmic probability, also known as Solomonoff probability, is a mathematical method of assigning a prior probability to a given observation. It was invented by Ray Solomonoff in the 1960s.[1] It is used in inductive inference theory and analyses of algorithms. In his general theory of inductive inference, Solomonoff uses the prior[clarification needed] obtained by this formula[which?], in Bayes' rule for prediction [example needed][further explanation needed].[2]
In the mathematical formalism used, the observations have the form of finite binary strings, and the universal prior is a probability distribution over the set of finite binary strings[citation needed]. The prior is universal in the Turing-computability sense, i.e. no string has zero probability. It is not computable, but it can be approximated.[3]
Contributeurs: Claude Coulombe, Imane Meziani, wiki, Sihem Kouache