« Classification ascendante hiérarchique » : différence entre les versions


m (Remplacement de texte — « == Domaine == » par « == en construction == <small>Entrez ici les domaines et catégories...</small> »)
m (Remplacement de texte — « <small>Entrez ici les domaines et catégories...</small> » par «  »)
Ligne 1 : Ligne 1 :
__NOTOC__
__NOTOC__
== en construction ==  
== en construction ==  
<small>Entrez ici les domaines et catégories...</small>
 
[[Category:Vocabulaire]]Vocabulaire<br />
[[Category:Vocabulaire]]Vocabulaire<br />
[[Category:]]
[[Category:]]

Version du 3 juillet 2019 à 10:04

en construction

Vocabulaire

[[Category:]]

Définition

In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:[1]

  • Agglomerative: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
  • Divisive: This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.

Hierarchique algorithme.gif




Français

algorithme hiérarchique



Anglais

hierarchical clustering