« Logique du premier ordre » : différence entre les versions


m (Remplacement de texte — « == Domaine == » par « == en construction == <small>Entrez ici les domaines et catégories...</small> »)
m (Remplacement de texte — « <small>Entrez ici les domaines et catégories...</small> » par «  »)
Ligne 1 : Ligne 1 :


== en construction ==  
== en construction ==  
<small>Entrez ici les domaines et catégories...</small>
 
[[Category:Vocabulary]]Vocabulary<br />
[[Category:Vocabulary]]Vocabulary<br />



Version du 3 juillet 2019 à 09:30

en construction

Vocabulary

Définition

Français

Logique du premier ordre.


Anglais

First-order logic

First-order logic—also known as first-order predicate calculus and predicate logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists X such that X is Socrates and X is a man" and there exists is a quantifier while X is a variable.[1] This distinguishes it from propositional logic, which does not use quantifiers or relations.[2]

A theory about a topic is usually a first-order logic together with a specified domain of discourse over which the quantified variables range, finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of axioms believed to hold for those things. Sometimes "theory" is understood in a more formal sense, which is just a set of sentences in first-order logic.

The adjective "first-order" distinguishes first-order logic from higher-order logic in which there are predicates having predicates or functions as arguments, or in which one or both of predicate quantifiers or function quantifiers are permitted.[3] In first-order theories, predicates are often associated with sets. In interpreted higher-order theories, predicates may be interpreted as sets of sets.



    • Termium
    • Mémo : Cours logique - Mémo n˚5, Logique du premier ordre, Emmanuel Coquery, (pdf)