« Classification ascendante hiérarchique » : différence entre les versions
m (Remplacement de texte — « Category:Vocabulaire » par « <!-- Vocabulaire --> ») |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 1 : | Ligne 1 : | ||
== en construction == | == en construction == | ||
[[Category:Vocabulaire]] | |||
[[Category:]] | |||
== Définition == | == Définition == | ||
Ligne 15 : | Ligne 11 : | ||
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram. | In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram. | ||
== Français == | == Français == | ||
'''algorithme hiérarchique''' | |||
== Anglais == | == Anglais == | ||
'''hierarchical clustering''' | |||
Version du 16 août 2019 à 21:46
en construction
Définition
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:[1]
- Agglomerative: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- Divisive: This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.
In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.
Français
algorithme hiérarchique
Anglais
hierarchical clustering
Contributeurs: Evan Brach, Imane Meziani, Jacques Barolet, wiki