« Ensemble de données avec déséquilibre des classes » : différence entre les versions
(Page créée avec « __NOTOC__ == Domaine == Category:VocabulaireVocabulaire<br /> Category:GoogleGoogle<br /> Category:Apprentissage profondApprentissage profond<br /> <br /> ==... ») |
|||
Ligne 13 : | Ligne 13 : | ||
<br /> | <br /> | ||
== Termes privilégiés == | == Termes privilégiés == | ||
=== ensemble de données avec déséquilibre des classes === | === ensemble de données avec déséquilibre des classes <small>n.m.</small> === | ||
<br /> | <br /> | ||
== Anglais == | == Anglais == | ||
Version du 5 novembre 2018 à 17:22
Domaine
Vocabulaire
Google
Apprentissage profond
Définition
Problème de classification binaire dans lequel les fréquences des étiquettes des deux classes sont significativement différentes. Par exemple, un ensemble de données de maladie dans lequel 0,0001 des exemples ont des étiquettes positives et 0,9999 ont des étiquettes négatives est un problème de déséquilibre des classes. Par contre, une prédiction de match de football dans laquelle 0,51 des exemples étiquettent une équipe comme gagnante et 0,49 étiquettent l'autre équipe comme gagnante n'est pas un problème avec un déséquilibre des classes.
Termes privilégiés
ensemble de données avec déséquilibre des classes n.m.
Anglais
class-imbalanced data set
Contributeurs: Claire Gorjux, Jacques Barolet, wiki, Robert Meloche