« Régularisation » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 9 : Ligne 9 :
Processus qui consiste généralement à pénaliser les valeurs extrêmes des paramètres d'un modèle afin d'éviter un éventuel surajustement.
Processus qui consiste généralement à pénaliser les valeurs extrêmes des paramètres d'un modèle afin d'éviter un éventuel surajustement.


Note: les régularisations les plus couramment employées dans le domaine des mathématiques, statistiques et de l'apprentissage automatique sont les régularisation L1 et L2.
Note: les régularisations les plus couramment employées dans le domaine des mathématiques, statistiques et de l'apprentissage automatique sont les régularisations L1 et L2.


==Français==
==Français==

Version du 9 juillet 2019 à 18:17


Définition

Processus qui consiste généralement à pénaliser les valeurs extrêmes des paramètres d'un modèle afin d'éviter un éventuel surajustement.

Note: les régularisations les plus couramment employées dans le domaine des mathématiques, statistiques et de l'apprentissage automatique sont les régularisations L1 et L2.

Français

régularisation n.f.

Anglais

regularization


Source: Nicolas Chapados, Yoshua Bengio (2003). Comment améliorer la capacité de généralisation des algorithmes d'apprentissage pour la prise de décisions financières, Montréal, CIRANO, 68 pages

Source: Termino

Source: Google machine learning glossary