« Apprentissage par renforcement » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
Ligne 3 : Ligne 3 :
<!-- Scotty2 -->
<!-- Scotty2 -->


== Définition ==
==Définition==
En apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome (robot, etc.), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement, et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative. L'agent cherche, au travers d'expériences itérées, un comportement décisionnel (appelé stratégie ou politique, et qui est une fonction associant à l'état courant l'action à exécuter) optimal, en ce sens qu'il maximise la somme des récompenses au cours du temps. <br />
En apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome (robot, etc.), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement, et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative. L'agent cherche, au travers d'expériences itérées, un comportement décisionnel (appelé stratégie ou politique, et qui est une fonction associant à l'état courant l'action à exécuter) optimal, en ce sens qu'il maximise la somme des récompenses au cours du temps. <br />
L’apprentissage par renforcement diffère fondamentalement de l''''apprentissage supervisé''' et de l''''apprentissage non supervisé''' par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations.
L’apprentissage par renforcement diffère fondamentalement de l'<nowiki/>'''apprentissage supervisé''' et de l''''apprentissage non supervisé''' par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations.


Voir [[apprentissage par renforcement inverse]]
Voir [[apprentissage par renforcement inverse|'''apprentissage par renforcement inverse''']]


== Français ==
==Français==
'''apprentissage par renforcement'''  <small>loc. nom. masc.</small>
'''apprentissage par renforcement'''  <small>loc. nom. masc.</small>
== Anglais ==
==Anglais==
'''reinforcement learning'''
'''reinforcement learning'''


Ligne 17 : Ligne 17 :
<small>
<small>


[https://fr.wikipedia.org/wiki/Apprentissage_par_renforcement ''Source: Wikipedia'' ]
[https://fr.wikipedia.org/wiki/Apprentissage_par_renforcement ''Source: Wikipedia'']

Version du 25 juillet 2019 à 15:38


Définition

En apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome (robot, etc.), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement, et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative. L'agent cherche, au travers d'expériences itérées, un comportement décisionnel (appelé stratégie ou politique, et qui est une fonction associant à l'état courant l'action à exécuter) optimal, en ce sens qu'il maximise la somme des récompenses au cours du temps.
L’apprentissage par renforcement diffère fondamentalement de l'apprentissage supervisé et de l'apprentissage non supervisé par ce côté interactif et itératif: l’agent essaie plusieurs solutions, on parle « d’exploration », observe la réaction de l’environnement et adapte son comportement (les variables) pour trouver la meilleure stratégie. On dira qu'il « exploite » le résultat de ses explorations.

Voir apprentissage par renforcement inverse

Français

apprentissage par renforcement loc. nom. masc.

Anglais

reinforcement learning


Source: Wikipedia