« Estimation de l'erreur de prédiction » : différence entre les versions
(Page créée avec « == en construction == Catégorie:Vocabulary Catégorie:Apprentissage machine Catégorie:UNSW == Définition == XXXXXXXXXXXXXXX == Français == '''XXXXXXXXX... ») Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 14 : | Ligne 14 : | ||
== Anglais == | == Anglais == | ||
'''expected error estimate''' | '''expected error estimate''' | ||
'''Laplace error estimate''' | |||
In pruning a decision tree, one needs to be able to estimate the expected error at any node (branch or leaf). This can be done using the '''Laplace error estimate''', which is given by the formula<center>''E''(''S'') = (''N'' – ''n'' + ''k'' – 1) / (''N'' + ''k'').</center>where | In pruning a decision tree, one needs to be able to estimate the expected error at any node (branch or leaf). This can be done using the '''Laplace error estimate''', which is given by the formula<center>''E''(''S'') = (''N'' – ''n'' + ''k'' – 1) / (''N'' + ''k'').</center>where |
Version du 13 septembre 2019 à 10:42
en construction
Définition
XXXXXXXXXXXXXXX
Français
XXXXXXXXXXXXXXX
Anglais
expected error estimate
Laplace error estimate
In pruning a decision tree, one needs to be able to estimate the expected error at any node (branch or leaf). This can be done using the Laplace error estimate, which is given by the formula
where
S | is the set of instances in a node |
k | is the number of classes (e.g. 2 if instances are just being classified into 2 classes: say positive and negative) |
N | is the is the number of instances in S |
C | is the majority class in S |
n | out of N examples in S belong to C |
Contributeurs: Claude Coulombe, Patrick Drouin, wiki