« Conditions de Karush-Kuhn-Tucker » : différence entre les versions
(Page créée avec « == en construction == Catégorie:Vocabulaire Catégorie:App-profond-livre Catégorie:Apprentissage profond Catégorie:Scotty == Définition == En optim... ») Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 14 : | Ligne 14 : | ||
'''Conditions de Karush-Kuhn-Tucker''' | '''Conditions de Karush-Kuhn-Tucker''' | ||
'''Conditions de Kuhn-Tucker''' | |||
Version du 27 décembre 2019 à 21:36
en construction
Définition
En optimisation mathématique, les conditions de Karush–Kuhn–Tucker (KKT), également appelées conditions de Kuhn-Tucker, sont des tests de dérivée première (parfois appelés conditions nécessaires de premier ordre) pour qu'une solution de programmation non linéaire soit optimale, à condition que certaines les conditions de régularité sont remplies.
Permettant les contraintes d'inégalité, l'approche KKT de la programmation non linéaire généralise la méthode des multiplicateurs de Lagrange, qui ne permet que des contraintes d'égalité.
Français
Conditions de Karush-Kuhn-Tucker
Conditions de Kuhn-Tucker
Anglais
Karush–Kuhn–Tucker (KKT) conditions
Kuhn–Tucker conditions
Source: L'apprentissage profond. Éd.Massot 2018 page 112, 245
Contributeurs: Jacques Barolet, wiki