« Loi normale » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 4 : Ligne 4 :
[[Catégorie:Intelligence artificielle]]
[[Catégorie:Intelligence artificielle]]
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:GRAND LEXIQUE FRANÇAIS]]
 
[[Catégorie:9]]
==Définition==
==Définition==
En théorie des probabilités et en statistique, la '''loi normale''' est l'une des lois de probabilité les plus adaptées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elle est également appelée '''loi gaussienne''', '''loi de Gauss''' ou '''loi de Laplace-Gauss''' des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
En théorie des probabilités et en statistique, la '''loi normale''' est l'une des lois de probabilité les plus adaptées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elle est également appelée '''loi gaussienne''', '''loi de Gauss''' ou '''loi de Laplace-Gauss''' des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Ligne 22 : Ligne 22 :
   
   
==Anglais==
==Anglais==
'''Normal distribution'''
'''Gauss's law'''
'''Gauss's law'''
'''Gaussian distribution'''





Version du 17 mars 2020 à 15:59

Définition

En théorie des probabilités et en statistique, la loi normale est l'une des lois de probabilité les plus adaptées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elle est également appelée loi gaussienne, loi de Gauss ou loi de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.

Plus formellement, c'est une loi de probabilité absolument continue qui dépend de deux paramètres : son espérance, un nombre réel noté μ, et son écart type, un nombre réel positif noté σ.

Français

loi normale loc. nominale, fém.

loi de Gauss loc. nominale, fém.

loi gaussienne loc. nominale, fém.

loi de Laplace-Gauss loc. nominale, fém.


Anglais

Normal distribution

Gauss's law

Gaussian distribution




Source: Data Analytics post

Source: Wikipedia

Contributeurs: Jacques Barolet, wiki