« Ensemble de données avec déséquilibre des classes » : différence entre les versions


m (Remplacement de texte — « <!-- Vocabulaire --> » par «  »)
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 1 : Ligne 1 :
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Apprentissage profond]]
== Définition ==
== Définition ==
Problème de classification binaire dans lequel les fréquences des étiquettes des deux classes sont significativement différentes. Par exemple, un ensemble de données de maladie dans lequel 0,0001 des exemples ont des étiquettes positives et 0,9999 ont des étiquettes négatives est un problème de déséquilibre des classes. Par contre, une prédiction de match de football dans laquelle 0,51 des exemples étiquettent une équipe comme gagnante et 0,49 étiquettent l'autre équipe comme gagnante n'est pas un problème avec un déséquilibre des classes.
Problème de classification binaire dans lequel les fréquences des étiquettes des deux classes sont significativement différentes. Par exemple, un ensemble de données de maladie dans lequel 0,0001 des exemples ont des étiquettes positives et 0,9999 ont des étiquettes négatives est un problème de déséquilibre des classes. Par contre, une prédiction de match de football dans laquelle 0,51 des exemples étiquettent une équipe comme gagnante et 0,49 étiquettent l'autre équipe comme gagnante n'est pas un problème avec un déséquilibre des classes.
Ligne 17 : Ligne 11 :
<small>
<small>


[https://developers.google.com/machine-learning/glossary/  Source: Google, ''Machine learning glossary'' ]


[https://developers.google.com/machine-learning/glossary/  Source: Google, ''Machine learning glossary'' ]
 
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Apprentissage profond]]

Version du 6 mai 2020 à 19:12

Définition

Problème de classification binaire dans lequel les fréquences des étiquettes des deux classes sont significativement différentes. Par exemple, un ensemble de données de maladie dans lequel 0,0001 des exemples ont des étiquettes positives et 0,9999 ont des étiquettes négatives est un problème de déséquilibre des classes. Par contre, une prédiction de match de football dans laquelle 0,51 des exemples étiquettent une équipe comme gagnante et 0,49 étiquettent l'autre équipe comme gagnante n'est pas un problème avec un déséquilibre des classes.

Français

ensemble de données avec déséquilibre des classes loc. nom. masc.

Anglais

class-imbalanced data set


Source: Google, Machine learning glossary