« Distance de Mahalanobis » : différence entre les versions
(Page créée avec « ==en construction== == Définition == En statistique, la distance de Mahalanobis est une mesure de distance mathématique introduite par Prasanta Chandra Mahalanobis en 1... ») |
Aucun résumé des modifications |
||
Ligne 2 : | Ligne 2 : | ||
== Définition == | == Définition == | ||
En statistique, la distance de Mahalanobis est une mesure de distance mathématique introduite par Prasanta Chandra Mahalanobis en | En statistique, la distance de Mahalanobis est une mesure de distance mathématique introduite par Prasanta Chandra Mahalanobis en 1936. Elle est basée sur la corrélation entre des variables par lesquelles différents modèles peuvent être identifiés et analysés. C’est une manière utile de déterminer la similarité entre une série de données connues et inconnues. Elle diffère de la distance euclidienne par le fait qu’elle prend en compte la variance et la corrélation de la série de données. Ainsi, à la différence de la distance euclidienne où toutes les composantes des vecteurs sont traitées indépendamment et de la même façon, la distance de Mahalanobis accorde un poids moins important aux composantes les plus dispersées. Dans le cas de l’analyse des signaux, et en supposant que chaque composante soit une variable aléatoire de type gaussien, cela revient à minimiser l’influence des composantes les plus bruitées (celles ayant la plus grande variance). | ||
La distance de Mahalanobis est souvent utilisée pour la détection de données aberrantes dans un jeu de données, ou bien pour déterminer la cohérence de données fournies par un capteur par | La distance de Mahalanobis est souvent utilisée pour la détection de données aberrantes dans un jeu de données, ou bien pour déterminer la cohérence de données fournies par un capteur par exemple : cette distance est calculée entre les données reçues et celles prédites par un modèle. | ||
== Français == | == Français == | ||
Ligne 20 : | Ligne 20 : | ||
[[Catégorie:vocabulaire]] | [[Catégorie:vocabulaire]] | ||
[[Catégorie:sihem]] |
Version du 18 janvier 2021 à 11:36
en construction
Définition
En statistique, la distance de Mahalanobis est une mesure de distance mathématique introduite par Prasanta Chandra Mahalanobis en 1936. Elle est basée sur la corrélation entre des variables par lesquelles différents modèles peuvent être identifiés et analysés. C’est une manière utile de déterminer la similarité entre une série de données connues et inconnues. Elle diffère de la distance euclidienne par le fait qu’elle prend en compte la variance et la corrélation de la série de données. Ainsi, à la différence de la distance euclidienne où toutes les composantes des vecteurs sont traitées indépendamment et de la même façon, la distance de Mahalanobis accorde un poids moins important aux composantes les plus dispersées. Dans le cas de l’analyse des signaux, et en supposant que chaque composante soit une variable aléatoire de type gaussien, cela revient à minimiser l’influence des composantes les plus bruitées (celles ayant la plus grande variance).
La distance de Mahalanobis est souvent utilisée pour la détection de données aberrantes dans un jeu de données, ou bien pour déterminer la cohérence de données fournies par un capteur par exemple : cette distance est calculée entre les données reçues et celles prédites par un modèle.
Français
Distance de Mahalanobis
Anglais
XXXXXXXXX
Contributeurs: wiki, Sihem Kouache