« Matrice unitaire » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Unitary Matrix''' A Unitary Matrix is a form of a complex square ma... ») |
m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org ») |
||
Ligne 18 : | Ligne 18 : | ||
[https://deepai.org/machine-learning-glossary-and-terms/unitary-matrix Source : DeepAI.org ] | [https://deepai.org/machine-learning-glossary-and-terms/unitary-matrix Source : DeepAI.org ] | ||
[[Catégorie:DeepAI.org]] | |||
[[Catégorie:vocabulary]] | [[Catégorie:vocabulary]] |
Version du 15 décembre 2020 à 18:10
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Unitary Matrix
A Unitary Matrix is a form of a complex square matrix in which its conjugate transpose is also its inverse. This means that a matrix is flipped over its diagonal row and the conjugate of its inverse is calculated. If the resulting output, called the conjugate transpose is equal to the inverse of the initial matrix, then it is unitary. Unitary matrices have a few properties specific to their form. For example, a unitary matrix U must be normal, meaning that, when multiplying by its conjugate transpose, the order of operations does not affect the result (i.e. XY=YX). Similarly, U must be diagonalizable meaning its form is unitarily similar to a diagonal matrix, in which all values aside from the main diagonal are zero. Furthermore, a unitary matrix' eigenspaces must be orthogonal. This means that the values in which the matrix does not change, must also be orthogonal.
Contributeurs: Isaline Hodecent, wiki