« Expectation Maximization » : différence entre les versions


m (Remplacement de texte — « DeepAI.org ] » par « DeepAI.org ] Catégorie:DeepAI.org  »)
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
==en construction==
==en construction==
Voir [[algorithme EM]]


== Définition ==
== Définition ==

Version du 13 juillet 2021 à 09:02

en construction

Voir algorithme EM

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Expectation Maximization

Expectation maximization (EM) is an algorithm that finds the best estimates for model parameters when a dataset is missing information or has hidden latent variables. While this technique can be used to determine the maximum likelihood function, or the “best fit” model for a set of data, EM takes things a step further and works on incomplete data sets. This is achieved by inserting random values for the missing data points, and then estimating a second set of data. The new dataset is used to refine the guesses added to the first, with the process repeating until the algorithm’s termination criterion are met.



: DeepAI.org

Contributeurs: Claire Gorjux, wiki