« Conditional Random Field » : différence entre les versions
(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Conditional random field ''' Conditional random fields (CRFs) are... ») |
Aucun résumé des modifications |
||
Ligne 1 : | Ligne 1 : | ||
==en construction== | ==en construction== | ||
[doublon] | |||
== Définition == | == Définition == |
Version du 10 mars 2021 à 10:34
en construction
[doublon]
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Conditional random field
Conditional random fields (CRFs) are a class of statistical modeling method often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighboring" samples, a CRF can take context into account. To do so, the prediction is modeled as a graphical model, which implements dependencies between the predictions. What kind of graph is used depends on the application. For example, in natural language processing, linear chain CRFs are popular, which implement sequential dependencies in the predictions. In image processing the graph typically connects locations to nearby and/or similar locations to enforce that they receive similar predictions.
Contributeurs: Isaline Hodecent, Jean Benoît Morel, wiki