« Qualité de l'ajustement » : différence entre les versions


(Page créée avec « ==en construction== == Définition == XXXXXXXXX == Français == ''' XXXXXXXXX ''' == Anglais == ''' Goodness of Fit''' With regard to a machine learning algorithm, a g... »)
 
m (Imeziani a déplacé la page Goodness of Fit vers Qualité d'ajustement)
(Aucune différence)

Version du 3 novembre 2021 à 10:14

en construction

Définition

XXXXXXXXX

Français

XXXXXXXXX

Anglais

Goodness of Fit

With regard to a machine learning algorithm, a good fit is when the error for the model on the training data as well as the test data is minimum. Over time, as the algorithm learns, the error for the model on the training data goes down and so does the error on the test dataset. If we train for too long, the performance on the training dataset may continue to decrease because the model is overfitting and learning the irrelevant detail and noise in the training dataset. At the same time the error for the test set starts to rise again as the model’s ability to generalize decreases.

So the point just before the error on the test dataset starts to increase where the model has good skill on both the training dataset and the unseen test dataset is known as the good fit of the model.


Source : analyticsvidhya.com

Contributeurs: Imane Meziani, wiki