« Régularisation par abandon » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 4 : | Ligne 4 : | ||
[[Category:Google]]Google<br /> | [[Category:Google]]Google<br /> | ||
[[Category:Apprentissage profond]]Apprentissage profond<br /> | [[Category:Apprentissage profond]]Apprentissage profond<br /> | ||
[[Category:scotty]] | |||
[[Category:9] | |||
<br /> | <br /> | ||
Version du 6 décembre 2018 à 23:38
Domaine
Vocabulaire
Google
Apprentissage profond
[[Category:9]
Définition
Forme de régularisation utile dans l'apprentissage des réseaux de neurones. La régularisation par abandon consiste à supprimer de manière aléatoire un nombre fixe d'unités dans une couche du réseau pour un pas de gradient unique. Plus le nombre d'unités abandonnées est élevé, plus la régularisation est solide. Cette méthode est analogue à l'entraînement du modèle pour émuler un groupe exponentiellement large de réseaux plus petits.
Termes privilégiés
régularisation par abandon n.f.
Anglais
dropout regularization
Contributeurs: Claire Gorjux, Jacques Barolet, wiki, Robert Meloche