« Échantillonnage de candidats » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
Ligne 12 : | Ligne 12 : | ||
== Définition == | == Définition == | ||
Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture). Le but est que les classes négatives puissent apprendre à partir d'un renforcement négatif moins fréquent tant que les classes positives sont correctement renforcées positivement, ce qui est effectivement observé empiriquement | Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture). Le but est que les classes négatives puissent apprendre à partir d'un renforcement négatif moins fréquent tant que les classes positives sont correctement renforcées positivement, ce qui est effectivement observé empiriquement. | ||
<br /> | <br /> | ||
== Termes privilégiés == | == Termes privilégiés == | ||
=== échantillonnage de candidats n.m.=== | === échantillonnage de candidats n.m.=== |
Version du 8 décembre 2018 à 21:35
Domaine
Définition
Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture). Le but est que les classes négatives puissent apprendre à partir d'un renforcement négatif moins fréquent tant que les classes positives sont correctement renforcées positivement, ce qui est effectivement observé empiriquement.
Termes privilégiés
échantillonnage de candidats n.m.
Anglais
candidate sampling
Contributeurs: Claire Gorjux, Jacques Barolet, wiki, Robert Meloche