« Classification ascendante hiérarchique » : différence entre les versions


(Page créée avec « __NOTOC__ == Domaine == Category:VocabulaireVocabulaire<br /> Category:scotty <br /> <br /> == Définition == In data mining and statistics, hierarchical clusteri... »)
 
Ligne 2 : Ligne 2 :
== Domaine ==
== Domaine ==
[[Category:Vocabulaire]]Vocabulaire<br />
[[Category:Vocabulaire]]Vocabulaire<br />
[[Category:scotty]]
[[Category:]]
<br />
<br />
<br />
<br />

Version du 20 février 2019 à 11:14

Domaine

Vocabulaire

[[Category:]]

Définition

In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:[1]

  • Agglomerative: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
  • Divisive: This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a dendrogram.

Hierarchique algorithme.gif




Français

algorithme hiérarchique



Anglais

hierarchical clustering