« Word2vec » : différence entre les versions
Ligne 21 : | Ligne 21 : | ||
<br /> | <br /> | ||
Mot-à-vecteur (word2vec) est un algorithme pour produire des représentations vectorielles denses de mots appelé vecteurs-mots (en anglais word embeddings ou word vector). | Mot-à-vecteur (word2vec) est un algorithme pour produire des représentations vectorielles denses de mots appelé vecteurs-mots (en anglais word embeddings ou word vector). Typiquement, les vecteurs-mots sont utilisés pour enrichir les entrées textuelles dans un algorithme d'apprentissage profond. Les vecteurs-mots ont des propriétés intéressantes, par exemple, on peut les additionner ou les soustraire vecteur('reine') ~= vecteur('roi') - vecteur('homme') + vecteur('femme'). Il existe deux variantes de l'algorithme : l'algorithme PVM (en anglais Skip-Gram) un algorithme qui cherche à prédire les mots voisins d’un mot donné, et l'algorithme PMV (en anglais CBOW) qui cherche à prédire un mot à partir de ses mots voisins. | ||
== Anglais == | == Anglais == |
Version du 6 février 2019 à 17:21
Domaine
Vocabulary
Apprentissage profond
Coulombe
Définition
Français
<poll> Choisissez parmi ces termes proposés : mot-à-vecteur word2vec </poll>
Discussion:
Pour le moment, le terme privilégié est «mot-à-vecteur».
Mot-à-vecteur (word2vec) est un algorithme pour produire des représentations vectorielles denses de mots appelé vecteurs-mots (en anglais word embeddings ou word vector). Typiquement, les vecteurs-mots sont utilisés pour enrichir les entrées textuelles dans un algorithme d'apprentissage profond. Les vecteurs-mots ont des propriétés intéressantes, par exemple, on peut les additionner ou les soustraire vecteur('reine') ~= vecteur('roi') - vecteur('homme') + vecteur('femme'). Il existe deux variantes de l'algorithme : l'algorithme PVM (en anglais Skip-Gram) un algorithme qui cherche à prédire les mots voisins d’un mot donné, et l'algorithme PMV (en anglais CBOW) qui cherche à prédire un mot à partir de ses mots voisins.
Anglais
word2vec
word2vec is an algorithm and tool to learn word embeddings by trying to predict the context of words in a document. The resulting word vectors have some interesting properties, for example vector('queen') ~= vector('king') - vector('man') + vector('woman'). Two different objectives can be used to learn these embeddings: The Skip-Gram objective tries to predict a context from on a word, and the CBOW objective tries to predict a word from its context.
Contributeurs: Claude Coulombe, Imane Meziani, wiki