« Explicabilité » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 2 : Ligne 2 :
L’explicabilité désigne la propriété d’un algorithme dont les règles opératoires peuvent être comprises par les spécialistes. En intelligence artificielle, on l'oppose au concept de « boîte noire » qui qualifie souvent les algorithmes dont le comportement ne peut pas être compris par les humains.
L’explicabilité désigne la propriété d’un algorithme dont les règles opératoires peuvent être comprises par les spécialistes. En intelligence artificielle, on l'oppose au concept de « boîte noire » qui qualifie souvent les algorithmes dont le comportement ne peut pas être compris par les humains.


Un algorithme est explicable s’il est possible de rendre compte de ses résultats explicitement à partir des données et attributs d'une situation. Autrement dit, s’il est possible de mettre en relation les données d’une situation et leurs conséquences sur les résultats de l'algorithme ([https://datafranca.org/wiki/Causalit%C3%A9 causalité]).
Un algorithme est explicable s’il est possible de rendre compte de ses résultats explicitement à partir des données et attributs d'une situation. Autrement dit, s’il est possible de mettre en relation les données d’une situation et leurs conséquences sur les résultats de l'algorithme ([https://datafranca.org/wiki/Causalit%C3%A9 causalité)].


==Compléments==
==Compléments==

Version du 6 août 2022 à 19:04

Définition

L’explicabilité désigne la propriété d’un algorithme dont les règles opératoires peuvent être comprises par les spécialistes. En intelligence artificielle, on l'oppose au concept de « boîte noire » qui qualifie souvent les algorithmes dont le comportement ne peut pas être compris par les humains.

Un algorithme est explicable s’il est possible de rendre compte de ses résultats explicitement à partir des données et attributs d'une situation. Autrement dit, s’il est possible de mettre en relation les données d’une situation et leurs conséquences sur les résultats de l'algorithme (causalité).

Compléments

Attention! En cherchant à expliquer selon une approche causales, c'est à dire des causes vers les effets, l'explicabilité va beaucoup plus loin que la simple interprétabilité.

Français

explicabilité

Anglais

explicability

Source: Villani, Cédric (2018). Donner un sens à l'intelligence artificielle pour une stratégie nationale et européenne, Paris, Collège de France, 235 pages.

Source: Le Devoir, Thales : L'importance d'instaurer la confiance en l'IA.

Source: TERMIUM Plus

Source: Termino