« Réseau neuronal de graphes » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 5 : Ligne 5 :
'''Terme à proscrire : ''' '''réseau de neurones graphique'''
'''Terme à proscrire : ''' '''réseau de neurones graphique'''


On recense 3 approches à l'apprentissage automatique à partir de graphes : 1) l'utilisation d'un réseau convolutif (c.-à-d. réseau de graphes convolutif), 2) l'utilisation d'un réseau récurrent (c.-à-d. réseau de graphes récurrent) et 3) l'utilisation d'un réseau auto-attentif (c.-à-d. [[réseau de graphes auto-attentif]]).
On recense 3 approches à l'apprentissage automatique à partir de graphes : 1) l'utilisation d'un réseau convolutif (c.-à-d. réseau de graphes convolutif), 2) l'utilisation d'un réseau récurrent (c.-à-d. réseau de graphes récurrent) et 3) l'utilisation d'un réseau auto-attentif (c.-à-d. [[Graph_Attention_Network|réseau de graphes auto-attentif]]).





Version du 28 février 2023 à 15:27

Définition

Architecture de réseau de neurones pour l'apprentissage automatique à partir de données structurées en graphes.

Compléments

Terme à proscrire : réseau de neurones graphique

On recense 3 approches à l'apprentissage automatique à partir de graphes : 1) l'utilisation d'un réseau convolutif (c.-à-d. réseau de graphes convolutif), 2) l'utilisation d'un réseau récurrent (c.-à-d. réseau de graphes récurrent) et 3) l'utilisation d'un réseau auto-attentif (c.-à-d. réseau de graphes auto-attentif).


Français

réseau de graphes

réseau neuronal de graphes

RNG


Anglais

graph network

graph neural network

GNN


Source : Université IBN-KHALDOUN Tiaret

Source : Institut national de l'information géographique et forestière

Source : Distill