« Modèle séquence à séquence » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 7 : Ligne 7 :


== Compléments ==
== Compléments ==
 
Une point clé du modèle séquence à séquence est sa capacité de traiter des entrées et des sorties  de longueurs variables.
<hr/>
Généralement, un modèle séquence à séquence est implémenté en utilisant deux réseaux de neurones récurrents, un premier réseau est un encodeur et le second est un décodeur. Dans ces modèles, l'entrée et la sortie ne sont pas nécessairement de la même longueur.  
Généralement, un modèle séquence à séquence est implémenté en utilisant deux réseaux de neurones récurrents, un premier réseau est un encodeur et le second est un décodeur. Dans ces modèles, l'entrée et la sortie ne sont pas nécessairement de la même longueur.  
 
<hr/>
Un bon exemple d'utilisation d'un modèle séquence à séquence est la traduction neuronale d'une phrase d'une langue d'origine vers une langue d'arrivée. Un mécanisme d'attention peut être ajouté pour améliorer les performances.  
Un bon exemple d'utilisation d'un modèle séquence à séquence est la traduction neuronale d'une phrase d'une langue d'origine vers une langue d'arrivée. Un mécanisme d'attention peut être ajouté pour améliorer les performances.  



Version du 2 janvier 2024 à 18:42

Définition

Réseau de neurones récurrent qui transforme une séquence de données en entrée vers une nouvelle séquence de données en sortie.

Typiquement, on a un texte (ou une séquence de mots ou parties de mots en entrée) qui produit un autre texte (ou séquence de mots ou parties de mots) en sortie.

On parle aussi d'une architecture encodeur-décodeur.

Compléments

Une point clé du modèle séquence à séquence est sa capacité de traiter des entrées et des sorties de longueurs variables.


Généralement, un modèle séquence à séquence est implémenté en utilisant deux réseaux de neurones récurrents, un premier réseau est un encodeur et le second est un décodeur. Dans ces modèles, l'entrée et la sortie ne sont pas nécessairement de la même longueur.


Un bon exemple d'utilisation d'un modèle séquence à séquence est la traduction neuronale d'une phrase d'une langue d'origine vers une langue d'arrivée. Un mécanisme d'attention peut être ajouté pour améliorer les performances.

Français

modèle séquence à séquence

modèle séq.-à-séq.

modèle séq-à-séq

réseau récurrent séquence à séquence

réseau de neurones récurrent séquence à séquence

réseau neuronal récurrent séquence à séquence

architecture séquence à séquence

architecture séq.-à-séq.

réseau séq.-à-séq.

séquence à séquence

séq.-à-séq.

séq-à-séq

modèle encodeur-décodeur

architecture encodeur-décodeur

réseau encodeur-décodeur

réseau récurrent encodeur-décodeur

encodeur-décodeur

Anglais

sequence to sequence model

sequence-to-sequence

seq2seq model

seq2seq architecture

seq2seq network

encoder-decoder model

encoder-decoder architecture

recurrent encoder-decoder

encoder-decoder

Source: Henri Lasselin (2018). Make text look like speech: disfluency generation using sequence-to-sequence neuralnetworks Domain, rapport de stages, 44 pages.

Source: Marceau Caron, Gaétan (2017), Réseaux pour le langage, Montréal IVADO, consulté le 30 mai 2019.

Source: Termino