« Régression logistique » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Ligne 5 : Ligne 5 :
[[Category:Vocabulaire2]]
[[Category:Vocabulaire2]]
[[Category:Google2]]
[[Category:Google2]]
[[Category:Apprentissage profond2]]
[[Category:Apprentissage profond]]Apprentissage profond<br />
[[Category:scotty2]]
[[Category:scotty2]]
<br />
<br />

Version du 3 juin 2019 à 15:57

Domaine

Apprentissage profond


Définition

La régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit de modéliser au mieux un modèle mathématique simple à des observations réelles nombreuses. En d'autres termes d'associer à un vecteur de variables aléatoires  une variable aléatoire binomiale génériquement notée . La régression logistique constitue un cas particulier de modèle linéaire généralisé. Elle est largement utilisée en apprentissage automatique.



Français

régression logistique n.f. modèle logit n.f.



Anglais

logistic regression




Source: Google machine learning glossary
Source : Wikipedia IA