« Échantillonnage de candidats » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== Définition ==
== Définition ==
Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple [[softmax]], mais seulement pour un [[échantillon aléatoire]] d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture).  
Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple [[softmax]], mais seulement pour un [[échantillon aléatoire]] d'étiquettes négatives.
 
Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture).  


== Français ==
== Français ==

Version du 22 mars 2024 à 16:58

Définition

Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives.

Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture).

Français

échantillonnage de candidats

Anglais

candidate sampling

Sources

Source : Google machine learning glossary