« Imputation des séries chronologiques » : différence entre les versions


(Page créée avec « == en construction == == Définition == XXXXXX Voir aussi '''données spatio-temporelles''', '''prévision des séries chronologiques''', '''série chronologique''' et '''Time Series Generation''' == Français == ''' XXXXX''' == Anglais == ''' Time Series Imputation''' ''' Time-Series Imputation''' ''Time series imputation aims to fill in the missing values in incomplete time series data.'' == Source == [https://arxiv.org/abs/2011.11347v1... »)
 
Aucun résumé des modifications
Ligne 14 : Ligne 14 :
''' Time-Series Imputation'''
''' Time-Series Imputation'''


''Time series imputation aims to fill in the missing values in incomplete time series data.''
''Time Series Imputation is a process which aims to fil in the missing values in incomplete time series data. These missing values can have a negative impact on accuracy and forecasting since it makes the inference and conclusion vulnerable in future generalization. The challenge of missing values can occur for several reason, like sensor failures or human errors.''
 
''There exists several methods of time series imputation classified in three main classes: deletion methods, traditional methods and learning based methods.''


== Source ==
== Source ==

Version du 15 novembre 2024 à 16:55

en construction

Définition

XXXXXX

Voir aussi données spatio-temporelles, prévision des séries chronologiques, série chronologique et Time Series Generation

Français

XXXXX

Anglais

Time Series Imputation

Time-Series Imputation

Time Series Imputation is a process which aims to fil in the missing values in incomplete time series data. These missing values can have a negative impact on accuracy and forecasting since it makes the inference and conclusion vulnerable in future generalization. The challenge of missing values can occur for several reason, like sensor failures or human errors.

There exists several methods of time series imputation classified in three main classes: deletion methods, traditional methods and learning based methods.

Source

Source : arxiv

Source : arxiv

Contributeurs: Arianne