« Échantillonnage de candidats » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
||
Ligne 6 : | Ligne 6 : | ||
[[Category:Apprentissage profond]]Apprentissage profond<br /> | [[Category:Apprentissage profond]]Apprentissage profond<br /> | ||
[[Category:scotty2]] | [[Category:scotty2]] | ||
== Définition == | == Définition == | ||
Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture). | Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture). | ||
== Français == | == Français == | ||
''' échantillonnage de candidats n.m.''' | ''' échantillonnage de candidats n.m.''' | ||
== Anglais == | |||
''' candidate sampling ''' | |||
[https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ] | [https://developers.google.com/machine-learning/glossary/ Source: Google machine learning glossary ] | ||
Version du 15 juin 2019 à 20:14
Domaine
Apprentissage profond
Définition
Optimisation réalisée lors de l'apprentissage, dans laquelle une probabilité est calculée pour toutes les étiquettes positives, en utilisant par exemple softmax, mais seulement pour un échantillon aléatoire d'étiquettes négatives. Si un exemple est étiqueté beagle et chien, l'échantillonnage de candidats calcule les probabilités prédites et les termes de pertes correspondants pour les sorties de classe beagle et chien, en plus d'un sous-ensemble aléatoire des classes restantes (chat, sucette, clôture).
Français
échantillonnage de candidats n.m.
Anglais
candidate sampling
Contributeurs: Claire Gorjux, Jacques Barolet, wiki, Robert Meloche